当前位置:首页 » 翻译 
  • 匿名
关注:1 2013-05-23 12:21

求翻译:为了更有效的提取脑电信号的特征值,本文采用了三种方法来对比进行特征值提取:AR模型功率谱密度估计,基于小波包分解系数和子带能量的特征提取,共同空间模式算法是什么意思?

待解决 悬赏分:1 - 离问题结束还有
为了更有效的提取脑电信号的特征值,本文采用了三种方法来对比进行特征值提取:AR模型功率谱密度估计,基于小波包分解系数和子带能量的特征提取,共同空间模式算法
问题补充:

  • 匿名
2013-05-23 12:21:38
In order to more effectively extract the characteristic value of the EEG are three ways to compare the characteristic value extraction: ar model power spectral density estimation based on wavelet packet decomposition coefficients and sub-band energy feature extraction, the common spatial pattern alg
  • 匿名
2013-05-23 12:23:18
In order to extract the brain more efficient telecommunications, the characteristic values, this is a method to compare 3 to feature Value Extraction: AR model power spectral density estimate, based on wavelet packet decomposition coefficients and with energy, and the feature extraction algorithms c
  • 匿名
2013-05-23 12:24:58
For the more effective extraction brain electrical signal characteristic value, this article used three methods to contrast carries on the characteristic value extraction: The AR model power spectral density estimated, based on small wave packet resolution ratio and innertube energy characteristic e
  • 匿名
2013-05-23 12:26:38
For a more efficient extraction of EEG features value, this article uses a comparison of three methods for feature extraction: AR model power spectrum density estimation based on wavelet packet energy feature extraction and subband decomposition coefficient, common spatial pattern and its algorithm
  • 匿名
2013-05-23 12:28:18
正在翻译,请等待...
 
 
网站首页

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区

 
关 闭