当前位置:首页 » 翻译 
  • 匿名
关注:1 2013-05-23 12:21

求翻译:  为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt),lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。是什么意思?

待解决 悬赏分:1 - 离问题结束还有
  为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt),lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。
问题补充:

  • 匿名
2013-05-23 12:21:38
Data for the calculation of the linear least squares method, it will be x (t) = x0 * exp (rt) on both sides of the logarithm lnx (t) = lnx0 * exp (rt), lnx (t) = lnx0 + rt other y-= lnx (t) = lnx0, so we can get y = rt + a.
  • 匿名
2013-05-23 12:23:18
In order to use the smallest data for line 2, the calculation of the multiplication will be x (t) = x * EXP 0 (RT) both sides can be a logarithmic lnx (T) = lnx0 * exp(RT), lnx (T) = lnx0 + RT, and the other y = lnx (T) = lnx, a 0, so you can get a Y = RT+.
  • 匿名
2013-05-23 12:24:58
In order to carries on the linear least squares method with the data the computation, therefore nearby two takes x(t)=x0*exp(rt) the logarithm to be possible to result in lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt, another y=lnx(t), a= lnx0, therefore may result in y= rt+a.
  • 匿名
2013-05-23 12:26:38
For linear least squares calculations with data so as x (t) =x0*exp (RT) take the logarithm on both sides available lnx (t) =lnx0*exp (RT), lnx (t) =lnx0+RT, y=lnx (t), a=lnx0, available y=RT+a.
  • 匿名
2013-05-23 12:28:18
正在翻译,请等待...
 
 
网站首页

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区

 
关 闭